Théorème de Sylow

Exemple — L'ensemble T des matrices triangulaires supérieures à diagonale de 1 est un p-Sylow de $GL_n(\mathbb{F}_p)$.

En effet, $GL_n(\mathbb{F}_p)$ est en bijection avec l'ensemble des bases de \mathbb{F}_p^n , ce qui donne

$$|GL_n(Fp)| = \prod_{i=0}^{n-1} (p^n - p^i) = \left(\prod_{i=0}^{n-1} p^i\right) m = p^{n(n-1)/2} m$$

 $avec \ p \nmid m$

$$et |T| = \prod_{i=1}^{n-1} p^i = p^{n(n-1)/2}.$$

Lemme — On suppose $|G| = n = p^{\alpha}m$ avec $p \nmid m$. Soit H un sous-groupe de G et S un p-Sylow de G. Alors il existe $a \in G$ tel que $aSa^{-1} \cap H$ est un p-Sylow de H.

DÉMONSTRATION

Soit $a \in G$.

G opère sur G/S (quotient à droite) par translation à gauche. Pour cette action, le stabilisateur de $aS \in G/S$ est $aSa^{-1} \subset G$.

H opère aussi sur G/S et, pour cette action, le stabilisateur de aS est $aSa^{-1} \cap H$.

Comme aSa^{-1} est un p-groupe et chaque $aSa^{-1} \cap H$ est un de ses sous-groupes, les $aSa^{-1} \cap H$ sont des p-sous-groupes de H.

On suppose que pour tout $a\in G$, $|H/aSa^{-1}\cap H|$ est divisible par p. Comme $G/S=\bigcup$ (orbite de aS par action de H), on a

$$|G/S| = \sum_{aS \in G/S} |H \cdot aS| = \sum_{aS \in G/S} |H/aSa^{-1} \cap H|$$
 divisible par p .

Contradiction.

Il existe $a \in G$ tel que $|H/aSa^{-1} \cap H|$ n'est pas divisible par p, ce qui est suffisant pour conclure.

Théorème

 $Si |G| = n = p^{\alpha} m \text{ avec } p \nmid m \text{ alors } G \text{ a un } p\text{-Sylow.}$

DÉMONSTRATION

D'après le théorème de Cayley, G s'injecte dans \mathfrak{S}_n , qui s'injecte lui-même dans $\mathrm{GL}_n\left(\mathbb{F}_p\right)$. On a vu plus tôt que $\mathrm{GL}_n\left(\mathbb{F}_p\right)$ admet un p-Sylow S. Alors d'après le lemme, G admet un p-Sylow.

Théorème

Soit G groupe de cardinal $n = p^{\alpha}m$ avec $p \nmid m$. Alors

- pour tout p-sous-groupe H de G, il existe un p-Sylow S de G tel que $H \subset S$
- tous les p-Sylow de G sont conjugués (on note leur nombre k)
- k divise m et $k \equiv 1$ [p].

DÉMONSTRATION

- Soit H un p-sous-groupe de G. D'après le théorème précédent, il existe un p-Sylow S de G. D'après le lemme, il existe $a \in G$ tel que $aSa^{-1} \cap H$ est un p-Sylow de H. Comme H est un p-groupe, $aSa^{-1} \cap H = H$ soit $H \subset aSa^{-1}$ qui est aussi un p-Sylow.
- Soit H un p-Sylow de G. D'après précédemment, il existe $a \in G$ tel que $H \subset aSa^{-1}$. Par un argument de cardinal, $H = aSa^{-1}$.
- Comme on a une bijection entre G/Stab_G(S) et l'orbite de S pour l'action de G sur l'ensemble X des p-Sylow de G.

Or d'après le point précédent, l'orbite de S coïncide avec X. En passant au cardinal, $n = |G| = |\operatorname{Stab}_G(S)| \cdot k$ d'où $k \mid n$.

On considère l'action d'un p-Sylow S de G sur X. Comme S est p-groupe,

$$|\operatorname{fix}(S)| \equiv |X| [p].$$

 $\begin{array}{l} \operatorname{Soit} T \in \operatorname{fix}(S). \\ \operatorname{On pose} N = ST. \operatorname{Comme} N \subset G, S \operatorname{et} T \operatorname{sont des} p\text{-Sylow de} N. \\ \operatorname{Comme} T \in \operatorname{fix}(S), T \triangleleft N \operatorname{et d'après le deuxième point}, T = S. \\ \operatorname{Donc} \operatorname{fix}(S) = \{S\}. \end{array}$

On conclut $|X| \equiv 1$ [p] et on en déduit que $k \mid m$.

20-sided dice 3 2020-2021